Error Decreasing of Background Subtraction Process by Modeling the Foreground
نویسندگان
چکیده
Background subtraction is often one of the first tasks involved in video surveillance applications. Classical methods use a statistical background model and compute a distance between each part (pixel or bloc) of the current frame and the model to detect moving targets. Segmentation is then obtained by thresholding this distance. This commonly used approach suffers from two main drawbacks. First, the segmentation is blinded done, without considering the foreground appearance. Secondly, threshold value is often empirically specified, according to visual quality evaluation; it means both that the value is scene-dependant and that its setting is not automated using objective criterion. In order to address these drawbacks, we introduce in this article a foreground model to improve the segmentation process. Several segmentation strategies are proposed, and theoretically as well as experimentally compared. Thanks to theoretical error estimation, an optimal segmentation threshold can be deduced to control segmentation behaviour like hold an especially targeted false alarm rate. This approach improves segmentation results in video surveillance applications, in some difficult situations as non-stationary background.
منابع مشابه
Color Separation for Background Subtraction
Background subtraction is a vital step in many computer vision systems. In background subtraction, one is given two (or more) frames of a video sequence taken with a still camera. Due to the stationarity of the camera, any color change in the scene is mainly due to the presence of moving objects. The goal of background subtraction is to separate the moving objects (also called the foreground) f...
متن کاملA Foreground Detection System for Automatic Surveillance
Automated surveillance has long been an application goal of computer vision. An integral part of such surveillance systems is concerned with accurately segmenting foreground objects from the static background in the videos. In this thesis we introduce a novel system for background subtraction, which takes a different approach than the conventional background subtraction systems. We make the ass...
متن کاملMoving Objects Tracking Using Statistical Models
Object detection plays an important role in successfulness of a wide range of applications that involve images as input data. In this paper we have presented a new approach for background modeling by nonconsecutive frames differencing. Direction and velocity of moving objects have been extracted in order to get an appropriate sequence of frames to perform frame subtraction. Stationary parts of ...
متن کاملDetecting and counting vehicles using adaptive background subtraction and morphological operators in real time systems
vehicle detection and classification of vehicles play an important role in decision making for the purpose of traffic control and management.this paper presents novel approach of automating detecting and counting vehicles for traffic monitoring through the usage of background subtraction and morphological operators. We present adaptive background subtraction that is compatible with weather and ...
متن کاملReal-Time Background Subtraction using Adaptive Thresholding and Dynamic Updating for Biometric Face Detection
Face biometrics is an automated method of recognizing a person’s face based on a physiological or behavioral characteristic. Face recognition works by first obtaining an image of a person. This process is usually known as face detection. In this paper, we describe an approach for face detection that is able to locate a human face embedded in an outdoor or indoor background. Segmentation of nove...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010